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AN ADAPTIVE R-ESTIMATE

Michael Lee Cohen, Ph.D.
Stanford University, 1980

In 1962 Hajek proposed a test for location which was uniformly
asymptotically fully efficient over a large class of distributions.
Van Eeden subsequently derived the asymptotic theory for the corre-
sponding R-estimate. Many authors have expressed reservations with
regard to the small sample performance to be expected from this
approach. In contrast to the methods of Hajek and Van Eeden, the
procedure proposed here uses the entire data set to estimate the score
function of the locally most powerful rank test. Using nearest neigh-
bor density estimation methods, an estimate of the score function for
the asymptotically most powerful grouped rank test is constructed.
This function is itself a step function approximation to the score
function for the locally most powerful rank test. Large sample dis-~
tribution and optimality results are obtained for both the adaptive
rank test aﬁd the corresponding R-estimate of location. Small sample

monte-carlo results are provided.



Chapter

TABLE OF CONTENTS

1. INTRODUCTION . . « &« « ¢ ¢« s o &« o o =

2. DEVELOPMENT AND HISTORY OF ADAPTIVE RANK TESTS .

NN NNDNDNDN
.

Novn o=
.

The Testing Framework . . . . .« .« .« .
Density Estimation . . . .+ .« . . . .
An Adaptive Rank Test Coefficient . . . .
Comparison With Previous Work . . . . .
Convergence Properties e e e s e e s
Formation of the Test Statistic e e e e
Location and Scale Equivariance of the Test
Statistic « « « « 4 e e e e e .

3. ASYMPTOTIC PROPERTIES OF PROPOSED RANK TEST . e

3.1.

3.2.
3.3.

Asymptotic Equivalence of the Test Statistic and
the Asymptotically Most Powerful Grouped Rank

Test Statistic . . .« .« « « « « o«
Asymptotic Relative Efficiency . . . . .

Monte Carlo Investigation of Adaptive Testing

4. TFORMATION OF ADAPTIVE R-ESTIMATE AND RESULTING
PROPERTIES e e e e s e e e e e e e .

REFERENCES

The Derived Two-Sample Location Estimate .
Description of Monte Carlo Procedures « .
Improving Small Sample Performance . e e

Monte Carlo Results for the Adaptive R-Estimate

Comparison of Results With Other Adaptive

.Estimates . +« « +« & e e e« & s+ s e
Summary . o+ . . e e e e e e e s

iii

Page

w

oW 00O AW

b b

25

25
31
37

39

39

47
49

52

54
57

59



1. INTRODUCTION

In 1955, Stein [27] suggested that full asymptotic efficiency
in testing and estimation for a large class of distributions could be
obtained by utilizing the information about the density contained in
the data. This idea was further developed by Hajek [10] and
Van Eeden [31]. Hajek demonstrated that by estimating the score
function of the locally most powerful rank test, f'(F—l(u))/f(F-l(u))
an asymptotically most powerful test of location could be
constructed. Using the methods of Hodges and Lehmann [12], Van Eeden
utilized Hajek's test to~form an asymptotically fully efficient esti-
mate of location. These results are interesting theoretically; but
many authors, e.g., Hajek [10], Switzer [29], Huber [15], Wesley
[32], and Hogg [13], have expressed reservations concerning the small
sample properties achievable through this approach. There are seri-
ous questions about the applicability of the results of Hajek and
Van Eeden to real world data. 1In their approach the sample is split
into two parts which are used for separate purposes. The first part
is a vanishingly small fraction of the data which is used to estimate
the score function. The second part of the data determines the ranks
to be used with the coefficients based on the first part. This
approach raises doubts about the stability of the estimate of the
score function for small samples. Beran [5] has partially avoided
this difficulty, but his proposed estimate of the score function also

appears likely to perform poorly for small samples. No monte carlo



results are available concerning the small sample performance of any
of the above-mentioned adaptive estimates of location.

The methods we employ differ from those of Hajek and
Van Eeden mainly in two respects. First, the entire data set is used
to estimate the score function and to perform the resulting test of
location. Secondly, by the use of density estimation techniques, an
estimate of the score function of the asymptotically most powerful
grouped rank test is constructed. This function is itself a step
function approximation to the score function of the locally most
powerful rank test; and in approximating the score function in this
way, it is hoped to gain small sample stability of the estiméte.

In the manner of Hodges and Lehmann [12], and following
Van Eeden, it is possible to form an estimate of location from the
resulting rank test, i.e., an R-estimate. It is hoped that if this
two-sample rank test adapts well to the data, the same should be true
of the resulting estimate of location. Large sample optimality
results are shown for both the proposed adaptive rank test and the
associated estimate of location. Finally, small sample monte carlo

results are provided.



2. DEVELOPMENT AND HISTORY OF ADAPTIVE RANK TESTS

2.1. The Testing Framework

Assume that we have two samples (xl,xz;...,xn), and
(yl,yz,...,yn). Let Xy be i.i.d. F(x), yj i.i.d. F(x-d), F symmetric,
with density f£f. Let N = 2n. Also, let W= (wl,wz,...,wn) be defined

by

0 if the ith order statistics of the combined sample is an x

1 otherwise .

Then a linear rank test is a statistic of the form Z§=l c(i/N+l)wi,
where {c(i/N+1)} is a vector of constants determined by some function
c( ). A grouped rank test is a statistic with the above form and the
added constraint that the number of different c(i/N+1) be finite,
i.e., the range of c( ) is a finite set. Let us assume, as above,
that the second sample z is d units to the right of.the first sample,
X. Then to see the w-vector more clearly one could write down the
order statistics of the combined sample and replace everybvalue with
0, or 1, depending on which sample that data point came from. A
typical w-vector with the above shift might look like
00000101100101110111. It is easy to imagine the nature of a desir-
able vector of constants from the chain of 0's and 1's. One would
like a statistic which is large for positive changes in the location
of the second sample. The constants for the intermediate wi's are
relatively unimportant; since the 0's and 1's may be equally repre-

sented there. At the extremes, however, the pattern of O's and 1's



depends heavily on the size of the tails of the distribution. For a
given displacement a typical w-vector for a short-tailed distribution
might look like 00000001001110111111, whereés a typical w-vector for
a long~tailed distribution might look like 10100001001110111001. The
coefficients should take into account this dependence on the size of
the tails by attempting to place more weight on the extremes of the
w=vectors for distributions with short tails than for those with long
tails.

It is well known, Hajek [10], that for testing the hypothesis
that d >0 versus d =0, the locally most powerful rank test (LMPRT)
has c(i/N+l) = J(L/NH1)) = ~£'(F T(I/N1))/£(F 1(i/N+1)). We shall
consider the possibility of estimating J(u) from the data and using
the resulting estimate in a rank test, i.e., adapting. Such a test
would hopefully have large-sample optimality properties as well as
good small—sample performance for a large family of distributions,
and we will verify that such is the case for the proposed test. When
one is unsure of the actual distribution of the data, one could con-
sider using such a test, instead of, say, the normal scores test or
the sign test, (two-sample tests which are asymptotically most power-
ful for testiﬁg d >0 against d=0 for data which has, respectively, a

normal or a Laplace distribution).

2.2, Density Estimation
To estimate functions which are approximations to the score
funection, it is obvious that estimates of the density, at least, and

possibly its derivative need to be considered. There are two main



types of density estimates currently in the literature, kernel esti-
mates and nearest neighbor density estimates. Kernel estimates were
initially developed by Rosenblass [25] and Parzen [22]. Nearest
neighbor density estimates were developed by Fix and Hodges [8], and
more formally by Loftsgaarden and Quesenberry [19].

In density estimation we are actually estimating an integral
of the density over an.interval containing the point at which we wish
to determine the density, and then dividing by the length of the
interval. This estimates an average of the density in a neighborhood
of the point. The differences in the two procedures lie in the
determination of the interval. In kernel estimation, we (essentially)
preset a band-width and count the number of points in that band around
the point. In nearest neighbor estimation, we decide on how many data
points we would like to use for each point, here designated as k(N)
where N is the size of the sample, and determine the smallest symme-
tric band around the point which encloses the required number of data
points.

We will concentrate on nearest neighbor estimates in the hope
of obtaining stable estimation in the tails where the density of
observed points is low. Better estimation in the tails will corre-
spond to better estimation of the score function J(u) for u near zero
and one. This in turn should lead to better estimation of the coef-
ficients of the rank test for w's in the crucial regions as described
in the previous section. We feel that nearest neighbor estimates

should perform better than kernel estimates for small samples because



the size of the window is adapted to the number of data points in the
area, instead of being fixed as in kernel estimation.

The results that follow only use properties of density func-
tion estimates that are commonly held by both kernel estimates and
nearest neighbor estimates. Both types of estimate are location
invariant, clearly; since if we add a constant c¢ to the data and
estimate the demsity at x+c, we will get the same value as the den-
sity estimate at x of the untransformed data. Both estimates are
continuous. Also, both estimates converge uniformly with probabil-
ity one. We add that under general conditions which will not be
described here, various convergence results are shown to hold simul-
taneously for both types of estimate in the work of Moore and Yackel
[20]. Theréfore, any - future investigators could certainly study the
procedures to be described here with kernel estimates replacing near-

est neighbor estimates everywhere.

2.3. An Adaptive Rank Test Coefficient

It is our ijective to construct an estimate of J(u) which is
well behaved for small samples. We recall that
J(u) = —f'(F_l(u))/f(F_l(u)). There is certainly no difficulty in

obtaining an estimate F—l of F—l. The most commonly used estimate is

~-1

F (u) = X([nu]+1)’ where X(i) represents the i-th order statistic
from a sample of n i.i.d. X's. For this estimate, under the condi-
tion of absolute continuity, we have convergence with probability one

by proposition (i), page 423, Rao [24]. There exist in the litera-

ture several estimates of both f' and f, but these tend not to be



well-behaved for small samples, especially the estimates of £'. It
probably is not a good idea to divide by these unstable estimates so
that direct substitution in the formula for J(u) will very likely do

poorly. However, noticing that

-1 -1
d -1 . f(F “(uth)) - £(F “(u-h))
J(u) = — - f(F (u)) = - 1im ,
du h>0 2h
we might consider using 3(u) = —[%(a(u+b) - %(a(u—b))]/Zb, for some

fixed b, where %‘is some estimate of the density, and G(u) = F_l(u).
Pursuing this notion, let us proceed as follows:

Let 0 < Al < AZ < .0 < Ak+l = 1 be any k fractiles (i.e.,
partitions of [0,1]), and let P(i) = [Nki] + 1. Then define an esti-

mate of J(u) by
L = - [ECOD) - FCO,_NI/O, -2, )

for A, <u<2,.
i- i

1
This estimate is now identical in functional form to the score

function of a test which was proposed by Gastwirth [8]. 1In this

paper, Gastwirth showed that the test with score function

L(w) = [£(60\;_;)) = £(CO /Gy =2, )

generates the asymptotically most powerful grouped rank test based on
the fractiles»[lj] when the density underlying the data is f, under

certain regularity conditions on f. We remark that a grouped rank

. . e s +!
test statistic is a statistic of the form Z§=i cj

This collects the w-vectors' contribution to the test statistic into



k+1 groups and gives each observation in any group equal weight.
Thus we may consider-the ranmk test using the proposed estimate
of J(u) as an adaptative asymptotically most powerful grouped rank
test.

Hogg [13] suggested an approach similar to this in his review
of adaptive robust procedures. Quoting, "but I can imagine J(u)
being estimated by a curve constructed from a few line segments."
The estimate proposed here may be regarded as a development of this
suggestion. Also, after the present work was begun, Parzen [23]
noted the equality of the score function to a single derivative of
f(G(uw)) with respect to u and mentioned the possibility of using this

fact in analyzing data.

2.4, Comparison With Previous Work
Hajek [1962], considered the. following procedure. The X and Y

samples are randomly split into two sets each; Wh = (yl,...,yr ),
n

Zn = (Xl""’xrn)’ Un = (yrn+1,...,yn), Vh = (Xrn+l""’xn)' Let

r, e and rn/n + 0, as n > ©, Estimate J(u) using W and Z and

average the two estimates. Then determine the w-vector used in the
rank test from the two remaining samples, Un and Vh. Also, let

[O=hn,0 < hn,l < ... <h = rn] be a sequence of q +1-tuples of

n,q,

integers, and let y( ) be the order statistics of Wn. Finally, let
c be a sequence of constants and suppress the dependence of the
sample size on T and c, by denoting them by r. and c. Then the esti-

mate JH(u) is of the following form:



F(a/m-2re W) =

1, -1/30
('z')r {1/ [Y(h Yy " Y(n ) 1- [Y(h

)]}
n,j+c n,j-c n,jtctl

-y
) (hn,j—c+1

for h, j/r<i/n-2r+1< hn,j+1/r » 3=2,..059,, i=1,...,n-2r

]
and = () otherwise .

The definition is completed by taking JH(u) to be constant on the
intervals [(i-1)/(n-2r), i/(n-21)], i=1,...,n-2r. Form a similar
estimate based on {Zn} and average the two estimates. Van Eeden's
procedure differs from this by menotenizing the function JH(u) and
“both Hajek and Van Eeden subtract the mean of the JH(i/n—2r+l)'s from
éach estimated coefficient. The resulting two sample test can be

written in the following form:

n-r
T(0,V) = 3 M (i/n-2r+l)e

i=1 ’ 1

where for i.=1”...,n—Kn, wn,i is the indicator of the i-th order sta-
“tistic of the combined sample {u,v}.

We now study the differences between the estimator proposed
here and the estimator developed by Hajek. There are three basic
differences, two of which relate directly to the estimate of the
~gcore funetion, and a third (which will be discussed later) which
deals with the construction of the R-estimate. To facilitate the

comparison we will explicitly write the estimate proposed here as a

function of the data. (We will omit for mow the fact that both



estimates are averages of independent estimates from the two
samples.) Letting Dk(n)(a) be the distance from a to its k(ﬁ)-th

nearest neighbor of X, we have

L (i/n+1) [f(GO\j_l)) - f(GO\j)) ]/O‘j - >‘j—1)

= R p(-1y) ~F ey VO =20

) /20 Dy ) Kep(3-1))

- k(n)/2n Dk(n) (X(P(j))) ]/(Aj - }\j_l)

= B K p(51yam(1)) ~ X@(3-D-n2)] ]

- [/ K p534n03)) ~X@Gyon(a))) D

for P(j-1) < i < P(j), where n(l) and n(2) (and similarly n(3) and

n(4)) denote the number of data points from X(P(j—l)) to the left and
to the right, which are passed in order to symmetrically enclose k(n)
data points. Here B is a constant depending only on the sample size.

Note that with probability one, one of the end points of the interval

Ep(3-1))-n(2))* X (-1+n(D)))

is not a point of the data set. (See Figure 1.)

10



D) Fe@)) ™ k@) X))
3 3 +
A(e(D-n(2)) (o) Ye(+n (1))
Figure 1
We recall that
JH(i/N-2r+1,Wn)
- s{1/ly _y 1-1/1y -y o,
(hn,j+c) (hn,j—c) (hn ,j+c+1) (hn,j —c+1)

for some constant S.

The similarities and differences between the proposed coeffi-
cients and the coefficients of Hajek's test can now be explained.
Ignoring the leading constants, we concentrate on the four order

statistics appearing in each of the estimates.

We have from Hajek that h.n h ./r~ r—1/6.

317 Tn,j
1) The distances between the points at which JH(u) changes

Thus:

approach zero asymptotically.

2) The number of Wy that have the same coefficient in Hajek's

test is asymptotically (hn

,j+1-hn’j)/(1/n-2r+l) which

approaches infinity.
We see that the Hajek test is similar to a grouped rank test with the
1/6

number of groups slowly increasing to infinity, at the rate r'o.

The following similarities and differences are now apparent:

11



1) 1In Hajek's test the score function is estimated at asympto-
tically infinitely many points and will therefore be asymptotically
closer to J(u) than in(u) for most values of u.

2) In the tails, where good estimation is vital for robustness,

the Hajek interval (X(h X ) will have X(

’ close to
n,j-" (o, )

h_ .
n,j
one of the two end points, since it will take a longer interval to

find c, order statistics in one direction than in the other. The

corresponding interval for the proposed estimate, i.e.,

Ep(5)-n(2))* @G D)’

is symmetric about X(P(j))' For.small samples this should be an
advantage for the proposed estimate.

3) The estimated coefficients of Hajek's test and the test pro-
posed here both involve estimates of the derivative of the density at
a point u. 1In both approaches this is accomplished by taking the
difference of estimates of the density at the end points of an inter-
val containing u. The interval used for the determination of the
proposed coefficients is much wider than that used in Hajek's method.
This may contribute to a more stable estimate for small sample sizes.

4) Finally, and most importantly, Hajek's estimate is based on
r, data points, where rn/n + 0., The estimate here is based on the
total sample.

In summary, the two major differences are:
1) The proposed test sacrifices some asymptotic efficiency for

small sample performance.

12



2) The proposed test uses the entire sample instead of a
vanlshingly small fraction to estimate J(u) and should

therefore be more stable.

2.5. Convergence Properties
Now that the estimate has been defined, we need to examine
its convergence properties. We will show that the above adaptive
rank test coefficients converge to Gastwirth's asymptotically most
powerful group rank test (AMPGRT) coefficients for a wide class of
distributions.
We will need the following regularity assumptions:
1) F has a continuous density f > 0 for all x.
2) £ is bounded.
3) ' exists and is bounded for all x.
4) 0 < [(£'/£)% fdx = I(£) < .
Let % be any location equivariant density function estimate which
converges strongly, uniformly to f (e.g., the nearest>neighbor
density estimate, Devroye and Wagner [6]). Let Xl,...,Xh be i.i.d.

~ F(x). Let F-'l = G be defined as before.

Note: Since we are assuming f' exists and is bounded for all x, we
have as a by-product that f is Lipschitz of order one and therefore

absolutely continuous, and therefore uniformly continuous.

LEMMA 1. Under the additional assumption that k(n) > vn log n we

have

13



[L (w)-L)]+>0wp. 1 ,

where

L(w) = [£(60y_ 1)) - 5O /O -A,_)

PROOF. In the following we will often use the elementary fact that

if as n >

Xn-* X w.p. 1

Yn+Yw.p.1 R

then
X +Y > X+Yw.p. 1 .
n n

It is well known that convergence w.p. 1 is preserved by continuous
functions, that is, if h(u) is continuous and X, > Xw.p. 1, then

h(Xn) + h(X) w.p. 1. Devroye and Wagner [6] show that if the two

conditions

(2.5.1) Dk(n) (w) 0 w.ep. 1 as n-—>o |
where D is as defined in Section 2.4, and
k(n)
2
(2.5.2) n(Dk(n) (W) /logn+°w,p. 1 as n-=>x |,

are satisfied, then

(2.5.3) sup[/f:(u) -f(w)] -+ 0 w.p. ‘l as n >
u

14



From Theorem 1 of Moore and Yackel [21], from a result of Kiefer

[18], we have that if k(n)/log log n -+ ®, then

(2.5.4) K(n)/(nH(Dk(n)(u))) +1lwop. 1 ,
where
H(D (w)) = s f(x)dx
k(n) ?
(D (9))

where S(Dk(n)(u)) = interval of length ZDk(n) centered at u. From
(2.5.4) we have that H(Dk(n)(u)) %+ 0 w.p. 1. Since £f(x) > 0 for all
X, we clearly also have Dk(n)(u) <+ 0 w.p. 1. From the same work we

also have that

(2.5.5) 2Dk )(u) inf f(x) < H(Dk(n)(u))

(n XES(Dk(n)(u))

< ( .
2y () (W xe(D:Z) @y
Also by (2.5.4) and (2.5.5) we have that nDk(n)(u)/k(n) -
1 w.p. 1. Therefore, nsz(n)(u)z/K(n)2 *+ 1 w.p. 1. Thus to satisfy
(2.5.2) above we need n2/k(n)2 to be < n/log n. This is equivalent
to k(n) > vn log n. Therefore, we have shown that %(u) converges to
f(u) w.p. 1 uniformly.
Now consider %(a(u))-f(G(u)). This is equal to
£(G(uw)) - £(G(u)) +£(G(w)) - £(G(u)). We will show that each of these
two differences converge to 0 w.p. 1. The first difference converges
to 0 w.p. 1 by the strong uniform convergence of nearest neighbor

density estimators demonstrated above. The fact that a(u)-G(u)

15



converges to 0 w.p. 1 is stated previously. Then since convergence
w.p. 1 is preserved by continuous functions, we have that
f(a(u))-f(G(u)) converges to 0 w.p. 1. Dividing by Ki-—ki_l does

not change the convergence and the desired result follows. Q.E.D.
COROLLARY . Ln(u) -+ L(u) in probability as n > =,

2.6. Formation of the Test Statistic
Our final goal is to use the coefficients developed above, to

create a test statistic. This statistic will have the basic form

N L
.Z Ln(i/I\I+1)coi .
i=1

It is necessary to determine the distributional properties of this
random variable in order to use it in testing situations. The sta-
tistic may be used conditionally on the estimated coefficients to
produce a level o test for finite n. However, we are going to pro-
pose a slightly different procedure.

We would like to normalize the test statistic in order to
provide a large sample version of the statistic which can exploit the
approximate normality. That is, we wish to modify the statistic to
have mean zero.and asymptotic variance one under the null hypothesis
of no change in location. Then in order to determine the level o
critical value for the test, we will generate a large number of repe-
titions of the modified statistic and determine its 1-0 percentile

empirically. The following lemmas are helpful in allowing us to

16



substract the mean from the above statistic producing a statistic

with mean O.

LEMMA 2, If the fractiles ()\l,...,}\k) are symmetric about 1/2, that

is, if )\i =1 —)‘k+l—i and if f 1§ symmetric about 0, that is,

f(x) = £(-x), and finally, if ¢y = Cpyg_i» then
k+1 :

PROOF. Assume k is odd. Since f is symmetric, G(u) = -G(1-u). Then

we have

[£C60; 1)) = £(6OI T = [£(GQ-Nyy (s 11)) - (6N, )]

= [£060 g (5_1y)) = (60,1 )]

The result follows since ci = The case for k even is

Cr+2-i°
similar, Q.E.D.

Recalling that N=2n, let

. k+1
L= I L{E/M1)/N= I L(Ai)(P(i)-P(i-l)+l)/N
i=1 i=1
and
_ 2n k+1 .
(2.6.1) L:= I L (i/M1)/N= I L (A)((PH)-PE-1)+1)/N ,
n i=l n i=1 n 1

17



where again P(i) = [Nki] + 1. We note that the results presented
here have specified equal sample sizes for notational convenience.
The derived results remain true for the more general situation under
simple conditions, e.g., the bounding of the limiting proportion of

each of the two samples away from zero.

LEMMA 3. Under the conditions of Lemma 1 and Lemma 2, fﬁ converges

in probability to O.

PROOF. We have

ket
(2.6.2) Ln = izl Ln(ki)(P(l)-P(l—l)-l)/N
ket [£(G0y_;) -E@O)] B Py D
= P(i) -P(i-1) -1) .
i=1 Ny =2 p)
We have
P,-P, . -1 [NA,]-INA, ,]-1
i Ti-1 _ i i-1 o
NG oA, p | Mg -w_, bt @7

Also, we have shown that %(a(ki)) converges in probability to
f(G(Ki)). Therefore, iﬁ given by (2.6.2) converges in probability,

as n > %, to

k+1

(2.6.3) izl [£(e(r;_1) -£(6OA D]

which = 0 by Lemma 2 with c; = 1 for all i. Q.E.D.

Our test statistics now has the modified form

18



N
1 o =
(2.6.4) ST = G =T

Henceforth, LN will indicate an estimate based on a simple average of
estimates from each of the two samples of size n. Similarly, f& will
represent (2.6.1) with i£ replaced by iﬁ. To show that the modified

statistic has mean zero, we need one result.

LEMMA 4. w; and LN(j/N+1) are pairwise independent, for all 1i,j,

when there is no difference in location in the two samples.
PROOF. We havé
Prob{iN(u)s(a,b); wi==1} + Prob{iN(u)E(a,b); wi==0}
= Prob{l (we(a,b)} .

We also have under the null hypothesis that

ProbfiN(u)e(a,b); wi==1} Prob{iN(u)e(a,b); mi==0} .

Therefore,

Prob{iN(u)e(a,b) 3wy = 1} % Prob{i\.N(u)e(a,b)}

Prob{wi==l} 'ProbfiN(u)e(a,b)} Q.E.D.

We now show that the test statistic given by (2.6.4) does

indeed have mean 0.

19



LEMMA 5. Let
A N ~ —
TN = i£1<LN(l/N+l)-LN)mi .

Then, under the conditions of Lemma 1 and Lemma 2, if there is no

difference in location between the samples, E(TN) = 0.

PROOF. By the independence shown in Lemma 4,

A N R A —
E(TN) ,izl E{(LN(1/N+1) - LN)mi}

N
I

E{(iN(i/N+1) ~TIEW)}
i=1

l=

N N _
(1/2) = E{(LN(i/N+1)-LN)}
i=1

0 . QED.

Now that we can assure ourselves of a statistic that has mean
0, we would like to modify the test statistic so that is has asympto-
tic variance 1. To do this we determine the asymptotic standard
deviation and divide the test statistic by an estimate of this

constant. We will, in fact, show that the asymptotic variance is

k+1

I [E60G_ ) - £ IO -2 ) .
i=1

1
@

Therefore, if we can find a function of the data which converges to

the above variance, we can divide by the square root of that function
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of the ‘data-so that the resulting test statistic will have asymptotic
variance 1.
LEMMA 6. Under the conditions of Lemma 1 and Lemma 2,

N ~ _
z [LN(i/N+1) - LN]Z/N

i=1

converges in probability to

k+1 2
RINCCODEECOW ARSI
PROOF.
N o, —
)X [LN(i/N+1)-LN] /N
i=1
{3 [T (i/8+1) ] - 2T, N(“(/ 224 3 @I
= i/N+ - 2L z (L. (i/N+1 + 2 (L N
oW Ng=1 ¥ i=1 N
N

5 [iN(1/N+1) 1278 —T.NZ
1

We have shown that iﬁ converges in probability to 0. Also,
2 R s
since x~ is a continuous function, and continuity preserves con-
vergence in probability, we have that i% converges to 0 in

probability. Therefore, we can concentrate on the quantity
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(2.6.5) Z LN(1/N+1) /N

i=

k+1

= 3 {(L (A »X) +L ()\ Y))/z} (P(3) - P(i-1) - 1)/N
j=1
k+1 )

= I {(L (A »X) +L (A ,Y)) /2] ([Nx 1- [NA =D/
j=1

where Ln(kj,X) is written to explicitly indicate the dependence on
the first sample, and similarly for £ (l Y) We have that in(kj,X)z

and L (XJ Y) both converge in probability to L(k ) and therefore

J+l k+

ZJ -1 (A ) converges in probability to Z 1 L(A ) For large N we

can replace ([NX.] -[NA -1 1-1)/N by A.-—X. .1 SO that expression

k+l
so1 LoDy -2 .

Heﬁce as n > @, Z'=1 iN(i/N+l) /N converges in probability to
k+l

(2.6.5) is asymptotically equivalent to I

k+l 2
,Z L(X ) (X —A ) which equals Z [f(G(Kj_l)—f(G(Xj)] /(Aj—Kj_l).

Q.E.D.

Thus a studentized version of the original test statistic is

N N — ;’
.z [LN(i/N+l) -LN]mi/N2
2 i=1

Lo, oe o — 2, 0%
(Z){( T [LN(i/N+1) —LN] ) /N}
i=1

We have shown that the numerator of T2 has mean zero. We will show

later that T2 has asymptotic variance = 1.
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2.7. Tocation and Scale Equivariance of the Test Statistic

Consider the test statistic

N .
X i/ o
o1 Ly i

e s 1 L a/mnlP
1/N4+
i=1 g
where
R (1 (i/N+1,%) + in(i/N+1,Y)]
L (1/1) = n s - >
and

L,(1/N+1,X) = [f(GO\j_l)) - f(GO\j)) ]/(kj - >‘j-1)

< < 3 3 o L3 A -
for Aj—l i/N+1 —-Aj (similarly for Ln(1/N+l,X)- We have GcX+d(u)
cax(u) + d if ¢ > 0. Similarly with Y replacing X. Also,

%C§+d(cu+d) = %C}E(cu) = k() /elNDy oy (w) = (1/c)%X(u). Similarly with

Y replacing X. Thus,

23



Fal

ch+d(G

c}~<+d-(>‘i-1)) = foxaCoxraPy))
(. -A
. 1

>

'.3L-l

—~
&
[¢]

'z

~
]

i—l)

(el Ohy_)H) = £y, 1 (B (A )+

chFd
(g -20)

W TG0y 1)) - W/ (600

~ ~

(y=20)

(1/c)£n(u,§) i

Similarly we have £n(u,¢Y+d) = (1/c)£n(u,g). Clearly,

mi(c§+d,cz+d) = wi(g,g),for c > 0. The denominator

[¢1/4) Z§=1 fJN(i/N+l)2]1/2 also clearly becomes multiplied by 1l/c.
Therefore, for ¢ > 0, the test statistic will not change. If we were
to change iN(i/N+l) by subtracting its mean'fﬁ, all the equivariance
properties shown above would remain since the average of equivariant
terms is also equivariant. Equivariance under a location shift will
be used later to help demonstrate the asymptotic properties of the

location estimate resulting from TN.
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3. ASYMPTOTIC PROPERTIES OF PROPOSED RANK TEST

3.1. Asymptotic Equivalence of the Test Statistic and the
Asymptotically Most Powerful Grouped Rank Test Statistic

let us assume that {§} ='{X1,...,X£ R {Z} = {Yl,...,

two samples of i.i.d. observations from the c.d.f. F. Let F satisfy

Y }, are
n

the following regularity conditions:
1) F has a continuous density £ > 0 for all X.
2) f£' is bounded for all x.
3) 0 < f(£'/9)? fdx = I() < inf.
4) f is symmetric about 0.

5) Finally, assume Ai =1~ 1,2,...,k.

k#l-g? T°
PN _ Al _ ~

Let G(u) = F “(u) = X([nu]+1)’ and let f(X) be the k(N) nearest

neighbor density function estimator. Let LN(u) = (Ln(u,X)4-Ln(u,Y))/2

where Ln(u,§) = [f(G(Ai_l))-f(G(Ai))]/(Ai-Ai_l) for xi—l <u< Ai

and similarly for Ln(u,Y). Let
* A _
(3.1.1) - L(u) = LN(u)--LN .

where fﬁ is given by (2.6.1) with in replaced by iN

Note: The number of fractiles k should not be confused with k(N),
the number of nearest neighbors used.

Let

T = I L (i/Ml)ae,/N
i=1 - *

and
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N 1
S= ¥ L(i/Mlo,/N® .

. 1

i=1

%
Thus T is the proposed test and S is the AMPGRT.
THEOREM 1. Assuming conditions 1) through 5) above hold, we have
*
that T - S = 0 in probability.
PROOF. We have
* :
k+1 L (A.) - L(A)) P(1i)
i i ¥

(3.1.2) T' -5 = 3 -
i=1 N

@, .
j=P(i-1)+1 3

We first show that the mean of (3.1.2) is asymptotically 0 so that we
can subtract its mean without changing its convergence properties.
This is equivalent to subtracting .5 from each of the wi's in

equatign (3.1.2). Thus we would like to show that

e I y) [ZP(i) g1 Oy [ P

i=1 Nl/z J=P(i-1)+1 i=1 N1/2 i=P(i-1D)+
asymptotically zero. By definjtion (3.1.1)

I (1/2)]1 - ¢

1 (1/2)] is

K+l L
(3.1.3) % L (Ai.) (P(i)-P(i-1)-1)/2N* =0 ,
i=1

since we have subtracted the mean from the coefficients. Therefore,

L(A,)) P,
. . o oktl T (i) .
it remains to show that A Zi=l 5 [Zj=P(i-l)+1 (1/2)] is asymp-

N
totically zero.

We have shown by Lemma 2 that

K+l
131 c,[£(GA_ ) -£(GOA))T=0 ,
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. we have for

when Ci = Crun_g > for all i. Since Ai =1 - Xk+1_1

each i

N(1-A ) = N(1-A

Y

k+2—i) -1

k+l—i)

k+i-1i
(Ak+2—i

Ny =M =D/ =4 ) =

Therefore the sequence of coefficients

e, = (M =M )/200 =2y )

possesses the property that C; = Cx42-i for all i and hence by
Lemma 2,

k+1
T [(NA, - NA,
=1 i i-

L-D720y - D IIEEOR ) - 5Ee )] =0 .

: 1
The above expression may be rewritten as Z?:i L(Ai)(NAi-NXi_l-l)/ZNZ,

which is asymptotically equal to A . Therefore,

e [EFO) =LY ] ?

. T (P(i) - P(i-1) - 1)/2 converges to 0 as n - «,
i=1 NZ

Subtracting this expression from (3.1.2) we obtain

z

(3.1.4) % -
2

%
k+l L O‘i)' L(?\i) | P(Zl) .
i=1 N +

j=P(i-1)+1

*
kLA -LADT sy pei-1)-1)

Tt N 2
kHL P(i) 1

= ¥ [L (xi)- L(Ai)] , T ((ui- 1/2){/N% .
i=1 13=P(i-1)+1
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We have shown that the difference of (3.1.4) and (3.1.2) converges to

0 in probability. If we can show that

P(4) L
(3.1.5) % (0, - 1/2)/N?
j=P(i-1)+1 3

is bounded in probability, then since L*(u) converges in probability
to L(u) we have that (3.1.4) is the sum of k+1 random variables
which converge to 0 in probability, and hence itself converges to 0
in probability. However, it is immediate that (3.1.5) is bounded in
probability since it is clearly a linear rank test statistic.
Therefore, by Theorem V.1.6. of Hajek and Sidak we have that (3.1.5)
has bounded variance. Hence by Chebychev's inequality, (3.1.5) must
be bounded in probability. Thus we have shown that T*-S converges
to 0 in probability for the wide class of distributions satisfying
conditions 1) through 5). Q.E.D.

Now we anticipate a result needed to utilize results of
AHodges and Lehmann [12]. For this purpose we introduce the following
framework: We consider the two samples X and Y; but instead of a
zero value for the shift, d, of the Y's relative to the X's, we let d
depend on the total sample size N according to dN = 2b/[N I(f)]%. In
order to use results of Hodges and Lehmann [12], it is necessary to
demonstrate that the conclusion of Theorem 1 remains valid under this

model. That is, we require the following:

COROLLARY. Assume that we have the sequence of alternatives
i
dN = 2b/[N I(£f)]? as described above. Then under assumptions 1)

%
through 5) we have that T -S converges to 0 in probability as N - «,
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PROOF. By Theorem VI.2.3, application #1, of Hajek and Sidak [11],
we have that (3.1.5) converges to a distribution with finite
variance. Therefore, since Lemma 2 is independent of the difference
in location between the two samples, the argument in the proof of
Theorem 1 remains valid and we have that under the sequence of alter-
natives above,‘T* - S converges to 0 in probability. Q.E.D.

To study the asymptotic distribution of the proposed test T*
we can therefore concentrate on the asymptotic distribution of the

AMPGRT, i.e.,

K+l P(i) 5
s= I LAY pX w,|/N*
i=1 j=P(i-1)+1

%
since we have now shown that the difference between T and S con-

verges to 0 in probability.

*
THEOREM 2. If conditions 1) through 5) hold, then T has an asymp-

totic normal distribution with mean .0 and variance
2
(1/4) J L (w)du .

PROOF. Clearly we have that S has the same asymptotic distribution

as
1 Kk NA,-Nki_l_l P(d) L
(3.1.6) 8" = I L(A,) 37 — z w, |/N®
=1 Y R@-PED-1 by

since the middle factor converges to 1 as N goes te infinity. We

also have that.E(Sl) = 0 since
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P(1i) P(i)
5 E(w,) = % (1/2) = (P(i) - P(i-1)-1)/2
j=P(i-1)+1 ¥ §=P(i-1)+L

so that
1 k+1
E(S) = I L(Xi)(Nki— in_l)/z
i=1
k+1
= I [£60y_p)) - £(6(0)) IN/2
i=1

0 by Lemma 2 where c; = N/2 .

It is clear that L(u) is square integrable since it is a

finite step function on a bounded interval. Let

V(Ry, 1) = (£ D) = £/ Oy- 2 g)

for P(j-1) < RN 1

b

< P(j). Then VN(l4-[uN]) and L(u) are the same

step function except that the change in steps occurs at points whose

differences are converging to 0. Therefore we clearly have that

1im fl

it vy [ ] - L(w) ]2 du=0 .
N->eo

This satisfies the conditions for Theorem V.l1l.6. in Hajek and Sidak

[11] with their

1,...,N/2

1 for i

0 for i (N/2) +1,...,N

Therefore, we have from this result that S has an asymptotic normal

distribution with expectation 0 and variance
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1 2 k+1 2
(/8 £ L@ du= (/8 T [£60y_p) - £6A) 170 -2, )
i=1

Q.E.D.

As before, it is necessary to establish the corresponding results for
the sequence of non-zero alternatives dN. To this end we consider

the following:

1
COROLLARY. Given the sequence of alternatives dN = 2b/[N I(f)]é,

*
then if conditions 1) through 5) are satisfied, we have that T has

an asymptotic normal distribution with

mean

and

variance = (1/4) {} Lz(u) .

PROOF. By Theorem VI.2.3., application #1, of Hajek and Sidak [11],

the desired result follows.

3.2. Asymptotic Relative Efficiency
We will now demonstrate that as the number of fractiles is

increased to infinity, the efficiency of

* N L
(3.2.1) T = ¥ L (i/N+l)a)i/N2
i=1

compared to the LMPRT converges to 1.
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THEOREM 3. Under conditions 1) through 5) of Section 3.1, as
max[li-ki_l] goes to 0, the asymptotic relative efficiency of the

*
adaptive test T given by (3.2.1) approaches 1.

PROOF. We have shown that

L kH, P(i) y
T = ¥ L (Xi) X wi /N
i=1 §=P(i-1)

has the same asymptotic distribution properties under the null hypo-
theses and under the sequence of alternatives dN given by (3.1.9) as

the AMPGRT

N 1

S = ¥ L(i/NHl)w,/N? .
. i
i=k

A
The asymptotic relative efficiency of T is therefore the same as that

of S, which, by Gastwirth [8], is

k(m)+1 9
I IE(E(_ () - £(60 @) 12/ O (@) -4, _; @)

i=1

()t
Now assume that we have sequences {Ai(m)} where
mﬁ=max{[ki(nﬂ-Ki_l(HO]}. The number of elements of each partition

is then k(m) + 1. We want to show that

-1 k(m)+1 2
HOT B EEOM@, 1) - £E60m )17 Ow)y - Am ) > 1

asm=>0 .

Since we have the existence of f', we know from the mean value

theorem that
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E(6C (m)) - £(60y_; () = [A, (@) - X, _ (m) £ (6(U,)) /£(6(U))

where Xi_l(m) < Ui < Ai(m). Therefore,

k(m)+1

GO ()Y 12
i=211 [£C6r,_; (m)) = £(6CA; @))) 17/ (A; (m) = A, _; (m))
k(m)+1 )
= iji {[ki(m)~ Ay_q(m ] /[Ai(m)_ Xi—l(m)]}
. T 2
[£7(6(U)) /£(6(U)) ]
k(m)+1 )
= izl [Ki(m)— Ki_l(HD][f'(G(Ui))/f(G(Ui))] ,

which is the Riemann approximating sum for I(f) as m goes to 0
Q.E.D.

It is important to point out that even though the A.R.E. =+ 1,
the rate is a function of the convergence of the Riemann sum to the
limiting integral, which will depend on the smoothness of
£'(G(u))/£(G(u)). However, given a finite set of distributioms,
e.g., normal, Cauchy, logistic, and Laplace, we can guarantee that we
will be € away from 1 in A.R.E. for all the distributions under con-
sideration, for any € > 0, by choosing the finest partition needed
for any member in that set.

We are sacrificing some degree of asymptotic optiﬁality in
order to achieve better small sample performance. We note that =

W. Albers [1], in a recent article in the Annals of Statistics

believes that this is inevitable for applied work in this area.
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Actually, the score functions of the distributions that are typically
used in robustness investigations are very smooth functions and in an
important sense we are not giving up much in terms of asymptotic
optimality. As we see below, the asymptotic relative efficiencies,
for k very small, are quite close to 1. We conjecture that for dis-
tributions that satisfy conditions 1) through 5) of Section 3.1 there
exists a sequence of fractiles depending on N that will enable the
procedure described here to have full asymptotic efficiency.

J. W, Tukey in a private communication mentioned‘that spacings

1/3

between fractiles of the order of N might work.

In order to determine how much efficiency is being sacrificed
it is necessary to first compute the asymptotically most powerful
grouped rank tests explicitly for these distributions of interest.

Here we will only consider k odd and A = 1/2 and concentrate on

k+1/2
the four distributions mentioned above.

For the Laplace disfribution, since the score function of the
asymptotically most powerful rank test is sign(u-1/2), we have that
the LMPRT is also the AMPGRT, since all the wi for 0<i/N+1<1/2
have the same coefficient, and similarly for Wy with 1/2 <i/N+1<1.
Therefore, the A.R.E. for all k is equal to 1. For the three other

distributions more work is needed. For the logistic distribution we

have

[£(G0y_;)) = €6 1/ Oy =2y )

= Dy @y P =R A0 =2 )
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For the Cauchy disfribution we have
[£(60A;_1)) - £(6AA NI/ (A, =X
= U/m [eos”(1(hy_; ~1/2)) - cos” (A, - 1/2) 1/ O ~A,_)) -

For the normal distribution we have

[£(60;_)) = £(CO IOy =2, )

= /2 M7 lexp(-1/207T 0 _ )P - exp <1728 A 0D 102y _p)

where @ represents the inverse normal distribution.

For k = 3 we have for regularly spaced Ai:

An =0, A, = .25, A, = .50, A = 1.00 .

2 = .75, A

3 4
For these Ai the coefficients for the logistic AMPGRT are

L(.25) = - . 75, L(.5) = - .25, L(.75) = .25, L(1) = .75 .

The asymptotic variance is .3125. The efficiency is .9375.

The coefficients for the Cauchy AMPGRT are
L(.25 = - ,636, L(.5) = - .636, L(.75) = .636, L(1) = .636

The asymptotic variance is .404. The efficiency is .8080.

The coefficients for the normal AMPGRT are
L(.25) = - 1.27, L(.5) = - .325, L(.75) = .325, L(1) = 1.27 .

The asymptotic variance is .8593. The efficiency is also .8593.

35



For k = 7 we have for regularly spaced Ki;

>
it
o
-
>
]
-
[
N
(9, ]
»
>
[

1250, Ay = .375, A, = .50,

4

Az = .625, Aﬁ = .750, X7 = .875, AS =1.00 .

The coefficients for the logistic AMPGRT are

L(.125) = -.875, L(.25) = -.625, L(.375) = -.375, L(.500) = -.125,
L.(.625) = .125, L(.75) = .375, L(.875) = .625, L(1.00) = .875.
The asymptotic variance is .3282., The efficiency is .9846.
The coefficieﬁts for the Cauchy AMPGRT are
L(.125) = -.373, L(.25) = -.899, L(.375) = -.902, L(.500) = -.373,
L(.625) = .373, L(.75) = .902, L(.875) = ;899, L(1.00) = .373.
The asymptotic variance is .475. The efficiency is .9500.
The coefficients for the normal AMPGRT are
L(.125) = -1.64, L(.25) = -.889, L(.375) = -.496, L(.500) = -.159,
L(.625) = .159, L(.75) = .496, L(.875) = .889, L(1.00) = 1.64.

The asymptotic variance is .9378. The efficiency is also .9378.

Below the proposed test is denoted by PT and its power is
compared to that for the LMPRT on the distribution for which that
~ test is locally most powerful, for various distributions. The first
half of each section below relates to the determination of the 95%
point under the null hypothesis for éach of the two tests for eéch

distribution, in order to guarantee that the tests have the same
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size. The second half of each section gives the empirical power for

the two tests. The ratio of the power is also given.

3.3. Monte Carlo Investigation of Adaptive Testing
In the following table ﬁ_l denotes the percentile for that

" particular distribution under study. PT denotes the proposed test.
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TABLE 1

RESULTS OF SIMULATIONS OF RANK TESTS

Fractiles = {.00, .25, .50, .75, 1.0}

Sample Size

20 For Each Sample

Normal "

(2m)*
15,000 repetitions d

0

15,000 repetitions d = .40

Cauchy %—(l/(l+(x—d)2)

15,000 repetitions d =0

15,000 repetitions d = .75
1

Laplace E-exp(—[x—d])

15,000 repetitions d=20

15,000 repetitions d = .75

exp(~(x-d))
2 .
(1+exp(-(x~-d)))
15,000 repetitioms d=20

Logistic

15,000 repetitions d = .40

exp (- (1/2) (x=d) %)

ILMPRT = Normal Scores Test

1 (.95) of LMPRT = 1.6259%
1 (.95) of PT = 1.81353
Pr{LMPRT >1.62594} = .3455
Pr{PT >1.81353} = .2936
Ratio = ,8497

1 (.95) of LMPRT = 1.65900
7L (.95) of PT = 1.78258
Pr{LMPRT >1.64900} = .4481
Pr{PT >1.78258} = .3845

Ratio = .8582

IMPRT = Median Test

F'-1 (.95) of IMPRT 1.700 (exact)

F'l (.95) of PT = 1.74412
Pr{LMPRT >1.62594} = .6484
Pr{PT >1.81353} = .6135

Ratio = .9462

IMPRT = Wilcoxon Two-Sample Test

#1 (.95) of LMPRT = 1.66006
L (.95) of PT = 1.79796
Pr{LMPRT >1.62594} = .3694
Pr{PT >1.81353} = .3402

Ratio = .9210
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4. FORMATION OF ADAPTIVE R-ESTIMATE
AND RESULTING PROPERTIES
4.1. The Derived Two-Sample Location Estimate
Now that we have constructed a two-sample test for change in
location which has some adaptive properties, we investigate the
transfer of these properties to the corresponding estimation problem.
To illustrate the connection between non-parametric testing and
estimation, consider theFWilcoxon two-sample rank sum test statistic

which can be written as

N .
W(XY) = T (i/ND)a.
~ i=1 +

where N = 2n and n is the number of X's and Y's. Now let mi(e)
denote the vector of indicator functions which would result from a

shift of e in the second sample so that

N
W(X,Y+e) = I (i/N+1)wi(e) .
T i=1

Let w; = inf{e :W(§,¥-+e) > 0}, w;* = supfe: W(§,¥+e) < 0}. Then

Wy = (w; + w§*)/2 is known as the Hodges-Lehmann estimator [12] in the
two-sample case. This estimator should be thought of as that shift in
the second sample which causes the test statistic for change in loca-
tion to assume its smallest absolute value. This procedure can, of
course, be used in almost any location testing framework in order to

derive a point estimate of location from a test statistic. In

‘particular, we can use the above procedure for the two-sample test
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proposed here. A point estimate of location based on a rank test
will be called an R-estimate. An analogous procedure may be used for
the one-sample case. For this case, in order to use the theory out-
lined above, which makes particular use of the two-sample framework,
two samples must be artificially created from the single sample. We
will concentrate on the method for accomplishing this below.

Suppose we have the sample § = XysXpseeer X e The second
sample then consists of the negative values of the first sample.
Then mi(e) is the indicator of whether the i-th order statistic of
the combined sample of {Xl-—e, xz-e,...,xh-e} and
{+Xl-+e, —x2-+e,...,—xh-+e} comes from the original sample ox the
second artificial sample. This method is more fully discussed in
Huber [16], where the influence curve and breakdown points for

‘R-estimates constructed in this manner are given.

We now proceed with the asymptotic theory of the proposed

R~-estimate. Let

. kL P(4)
(4.1.1) T(K,Y) = £ L (X)) % ®, ,
MY 4=l j=P(i-1)+1

* .
where L (li) previously defined by (3.1.1) is again an average of

estimates from the § and Y sampleé. We denote this test statistic by
%(%,g)_since it is now important to indicate exactly how changes in X
and Y affect the test.

In Van Eeden [31] thé coefficients of the adaptive rank
test were monotonized in the construction of the R-estimate. This

was done in order to use the results of Hodges and Lehmann [12].
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The monotonization of the coefficients guarantees that the rank test
will be an increasing function of e where e is the displacement of
the second sample from the first. This property is used to transfer
statements concerning the test statistic to ones involving the loca-
tion estimate which is helpful in asymptotic investigations.

The coefficients of the adaptive rank test T developed here
are not monotonized. We will show that for the distributions under
which Van Eeden's test is asymptotically fully efficient, the coeffi-
cients of the rank test proposed here will be monotonic for all suf-
ficiently large N with probability one.

By not arbitrarily imposing monotonicity, we gain an important
advantage with respect to the estimate of Van Eeden in terms of
robustness for the following reasons. All long-tailed distributions
(e.g., the Cauchy) have redescending score functions, and therefore
the LMPRTs for long-tailed distributions have non-monotonic coeffi-
cients. Considerable attention is given to long-tailed distributions
in robust estimation, and therefore the monotonization of the coeffi-
cients should be avoided since it impairs the performance of the
eétimate for distributions of this type. 1In particular, imposed mon-
otonization prevents estimates such as Van Eeden's from having asymp-
totic full efficiency for distributions with redescending score
functions. The following lemma allows us to use the results of Hodges
and Lehmann for the same distributions for which Van Eeden's estimate
is asymptotically fully efficient, while permitting some flexibility

for estimation in long-tailed situations.
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LEMMA 7. Under conditions 1) through 5) of Section 3.1, if L(Ki) is
*

strictly increasing with the increasing Ai’ then L (Ai) will also be

strictly increasing in i for all sufficiently large N with proba-

bility one.

PROOF. From Lemma 1 of Section 2.5 we have that L(u) converges to
L(u) w.p. 1. By convergence with probability one we have that for

all €> 0

(4.1.2) Prob{liN(Aj) -L(A) | > € infinitely often (i.0.)} =0 .

let 0 < m = min{L(Ki)-LCXi_l)}, which is greater than zero by

assumption. Then

Prob{L (1) < L O, )i.0.}

= Prob{[L (0 -1 T + [LOD - L, DT+ [LO,_) -T 0y )]
< 0 i.o.}

< Prob{[L (0) L] < -m/2 d.0.}

+ Prob{[L (A, ) -LO 1> -n/2 i.0.)

=0 . Q.E.D.

We note that the subtraction of the average LN clearly does not

affect monotonicity.
We now explicitly define the proposed adaptive estimate of

location, or adaptive R-estimate. We have that
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N k+1 P(1i)

%
T(X,¥-e) = X L (Ai) z (wi(—e)) .
- i=1 J=P(i-1)+1
Now define
* A

ey = sup{e: T(X,Y-e) >0} ,

Sk A

ey = inf{e : T(X,Y-e) <0} ,
and finally let

~ * %%
(4.1.3) ey = ©y + ex /2 .

We shall only consider the asymptotic theory for the
estimator gN in the genuine two-sample case since the theory trans-
fers immediately to the one-sample case.

We now give some results that follow immediately from the
work of Hodges and Lehmann, and Van Eeden. The determination of the

asymptotic distribution of e will follow directly from these results.

N

LEMMA 8. TFor N sufficiently large, %(X,Y-ke) is a non-decreasing
function of e for all X and Y, provided L(Ai) is an increasing func-

tion of 1i.

PROOF. By Lemma 7, with probability one there will be some N0 such

% *
that for all N > N, L (Ai) <L (ki+1) i=0,1,...,k. Without loss of

0’
generality we can assume that e > 0. Let {wi(e)} denote the
w-vector created by adding e to every Yj. Then {wi(e)} will have the

1's in the same or higher positions than the 1l's in {mi(O)}, since

the second sample will be shifted in the positive direction. Hence
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~ *

T(X,Y +e) is the sum of the same or larger L (Ai)'s than those con-
tributing to T(X,Y). Therefore T(X,Y+e) is a non-decreasing func-
tion of e for all X and Y with probability one for all sufficiently

large N. Q.E.D.
LEMMA 9. For T given by (4.1.1)

T(X,Y) + T(Y,X) =0 .

PROOF. By (4.1.1),

n R ko, [ P )
T(X,Y) + T(L,X) = I L (&) z @,
v ST =l (3=P(i-1)+l J
kL, [ P(D) )

+ ¥ L (Ai) z -1
i=1 3=P(i-1)+L /
kHL

= I L (ki)(P(i)-P(i—l)-l)
i=1

=0 by (3.1.1) ,

%
since mi(§,Y) =1 - wi(Y,X), and L (Xi) is a symmetric function of

the X and Y samples. Q.E.D.

LEMMA 10. TUnder the assumption that L(Ki) is increasing in i, the
distribution of ex is (absolutely) continuous provided F is

(absolutely) continuous.

PROOF. The result follows directly from Theorem 1 of Hodges and

Lehmann [12]. Q.E.D.
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LEMMA 11, Under the assumption that L(Ai) is an increasing function

A

of i, the distribution of the estimate e  is symmetric about e, the

N

difference in location between X and Y.

PROOF. By Lemma 9, T(X,Y) + %(X,Y) = 0. This is condition (3.3) in
Hodges and Lehmann [12] for pu = 0. We showed in Section 2.7 that

A

T(X+e, Y +e) = T(X,Y) .

~ o~

Therefore, we have that e is symmetric about e by Theorem 2 of

N
Hodges and Lehmann [12]. Q.E.D.

LEMMA 12, Under the assumption that L(Ai) is increasing in i, we

have for any real number e > 0

Prob{T(X,Y-e) < 0} < Prob{eg<e} < Prob{T(X,Y-e) < 0} .

PROOF. This result follows directly from Lemma 4 of Hodges and
Lehmann [12]. Q.E.D.
We are now ready to give the asymptotic distribution of the

proposed estimate.

THEOREM 4. Under conditions 1) through 5) of Section 3.1, assuming

the L(Ai) are monotone, we have

1
2]

N (QN- e)

converges in distribution to N(0,V) where
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4 %} L(u)2 du
v

U LI )’
where J(u) is given by -f'(F—l(u))/f(F-l(u)).

PROOF. Because of equivariance, we may let e, the difference in
location between the two samples, equal 0 without loss of generality.

' i
We have shown in the Corollary to Theorem 2 that for d = 2b/(N 1(£))*

(4.1.4) Lin Prob, {(1/0)[T(X,¥) -u] < u} = ()
Moo N

where Probd { } indicates the probability is evaluated under the
N
condition of a difference of dN in the two samples, and

=
I

= (bN%/(2 T(£)F) 2 u@wa

Q
[}

(1/4)N 161 L(u)2 du
‘We have

1 A 1
P = lin Proby{N’ ey < t} = Lim Prob {T(X,Y~[t/N*]) < 0}
oo oo .

by Lemmas 10 and 12. Now let

b = t[I(f)%]/Z

Then

P = Lin Prob,{1(X,¥-[2b/[N 1(£) ]*]) < 0}
N> -

lim Prob, {/'f(X,Y) < 0}
N-oo N 7

46



lim Prob, {(1/0) [T(X,Y) -1l < (1/o)p}
N0 N -

r

{} L(u) J(u)du

= 0/b
g Lw? aul? 1()?

\

%} L(w) J(u) du
= 01(t/2) — R
[fo L(u)® dul®

This is equivalent to the statement that

1
3

N eN

converges in distribution to N(0,V) where

4 4} L(u)? du

V—

= . Q.E.D.
{4} L(u)J(u)du}2

4.2, Description of Monte Carlo Procedures

It is important in simulations to increase the effective
sample size of a monte carlo calculation by employing certain vari-
ance-reduction techniques. We shall use one of the best known of
these techniques, which was prominantly featured in the Princeton
Robustness Study, see Andrews, et al. [2]., This method has come to
be called the Princeton Swindle. Descriptions of this procedure
appear in Andrews et al. [2] and Gross [9], and perhaps the most
detailed treatment may be found in Simon [26].

We will now describe the generation of random numbers from

the various distributions needed. To implement the variance
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reduction procedure we must always represent these observations as
normal random variables divided by independent non-negative random
variables. The uniform random number generator used was of the
usual modulo overflow type. The particular generator chosen pro-
duces eight significant digits and proceeds through all 108 numbers
before reﬁeating. To generate normal random numbers, we generate a
bivariate normal pair using polar coordinates and transform to
Cartesian coordinates. This is a frequently employed algorithm
which conveniently generates two independent univariate normals from
two independent uniforms.

To generate random numbers which have a Laplace distribution
and which have a representation as a normal divided by an independent
random variable, we follow Andrews and Mallows [3]. If l/(2V2)
has an exponential distribution, then a normal random variable
divided by V will have a Laplace distribution. Therefore take a
uniformly distributed random variable u and let V = 1//(-21n(a)) .

To generate random variables which have a logistic distribu-
tion, we again follow Andrews and Mallows [3]. If K has the
distribution of the Kolmogorov distance statistic,.then if Z has a
standard normal distribution, Z/(1/2K) has a logistic distribution.

To generate K we use the fact that 2K2 =5 Wi/i2 where the Wi are

‘ i=1
independent exponential variables.
The generation of random variables with the normal divided

by independent representation is straight-~-forward for the Cauchy,

slash, contaminated slashes, contaminated normals, and wild normals.
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See Bell [4], or -Andrews, et al. [2] for discussions of the above
distributions.

In order to improve the performance of the random number
generator we make use of a random scrambler. An array composed of
100 cells is used to store a random number until the cell containing
that number is randomly addressed.

In order to estimate the variance of the estimates of
variance arrived at in the simulations, summary statistics were
printed out every 500 repetitions. The variance of these summary
statistics were then used to estimate the variance of the estimates
of variance. This is a device commonly used in performing monte-—

carlo simulations.

4.3. Improving Small Sample Performance
The estimate of location described above was modified
slightly in several ways in order to improve small sample performance.

At the suggestion of John Tukey the coefficients of the rank
test were smoothed so that the coefficients of consecutive mi's were
forced to be relatively close in value. It was hoped that this
smoothing would decrease the small sample variance of the location
estimate. Two smoothing procedures for the estimate of L(u) were
investigated. L*(u) is a step function on [0,1], the steps occurring
at i/N+l1, for i=1,...,N. Define li = (A,

i-1

*
Thus a smoothed version of L (u) for 1i <u<l

+ Ai)/Z for i=1,...,N.

141° 0<1i<N, is
% *

defined as the line connecting L (li) and L (li+l). The second

method was similar to the first except that the smoothing was only
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done for A; < u < XN. This second method out-performed the first,
and both produced substantial improvement over the non-smoothed
version. We note that the smoothed versions do not converge to
Gastwirth's asymptotically most powerful grouped rank test.

The necessary symmetry of the coefficients dﬁe to the under-
lying symmetry of the parent distribution may be exploited in the
estimation of these coefficients. Thus the estimates of the coeffi-

cients of Wy and o, may be averaged and the average substituted

n+l-1i
for each of the two estimates. This slightly improves small-sample
performance. This procedure may also be regarded as a smoothing
device.

A
Smoothing of the estimate G, of G was also investigated.

The procedure which was finally selected used

G(uw) = (1/2) GEA/N+1) + (1/2)C((i+1)/(N+1)) ,

for i/(N+1) < u < (Li+1)/(N+1).
We also implemented the normal kernel nearest neighbor method
to smooth the estimate of f(u). (See Moore and Yackel [21].) This

yields

n n
£ (u) = (i/a R(n)) I K[(u-xi)/R(n)] ,
i=1

where K(z) takes the form of a normal kernel.

Note: the ordinary nearest neighbor estimate corresponds to the

uniform kernel
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1 if  [z] <1
K(z) =
0 otherwise .

‘The results of Devroye and'Wagner’[ﬁ] concerning the convergence
propertiés of nearest neighbor density estimates apply to a general
class of kernels which includes both the normal and uniform kernels.

It was necessary, finally, to search empirically for combin-
ations of parameter values for the estimator which in some sense
maximize its performance on long and short-tailed distributions. The
objective was to simultaneously achieve high efficiency for the
normal, the 25% contaminated normal (with the slash, denoted .25 1/U),
and the Cauchy. This criterion is similar to Tukey's concept of tri-
efficiency. The efficiency for the normal was considered to be of
greater importance than the efficiencies for the other two
distributions. Also, performance relative to thée other adaptive
estimators in the literature was a consideration.

In our efforts to optimize performance, we needed to
determine how many fractiles to use, which fractiles to use, and how
many nearest neighbors to use in the density estimate. We soon
determined that having more than six fractiles led to poor
performance. The optimal number of nearest neighbors for a sample
of size 20 was determined to be 11, and for a sample of size 40 the
best number was 19. These numbers were relatively insensitive to the
choice of the fractiles. The choice of the fractiles was much more
crucial. 1In the investigation of the performance for long-tailed

distributions, it was found that by taking the fractiles to be
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.30, .50, .70, 1.0, we could nearly equal the performance of the
median for those distributions, but that the efficiency for the
normal then fell below 80%7Z. It was found that in order to attain
80% efficiency for the normal the fractiles .15, .50, .85, 1.0
sufficed.

One of the most unpleasant features of the computation of
R-estimators is the necessity of resorting the combined sample
every time a new value is attempted in the minimization procedure.

In an attempt to mitigate this difficulty, various one-step procedures
using Taylor series were tried, as well as certain extrapolation
methods. None of these were found to be satisfactory.

Therefore, the minimization was ultimately performed as
follows. The interval from the first to the third quartile was
divided into 100 small intervals by 99 equally spaced points. The
test statistic (4.1.1) was evaluated at each of the 99 points as
well as at the two quartiles. The point at which this test statis-
tic achieved its minimum absolute value was taken to be gN' If tﬁis
value was achieved by more than one point, that point closest to the
median was taken as gN' This procedure uses the sample quantiles in
such a way as to insurerlocation and scale invariance for gN'
4.4, Monte Carlo Results for the Adaptive R-Estimate

We present simulation results for the proposed one-sample
R-estimate and make comparisons with other adaptive estimators in

Table 2 below. The location estimates considered are those proposed

by Johns [17], Hodges and Lehmann [12], Stone [28], and Takeuchi [30].
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These are designated JOH, H-L, STONE, and TAK, respectively. The
column labeled "BEST" lists the best performance for each distribu-
tion produced by any of the 65 estimates studied by Andrews, et al.
[2]. The results for the proposed estimate gN and the estimate
proposed by Stone [28] were determined by monte carlo simulation.
The results for the other estimates are taken from Andrews, et al.
[2]. The first column lists the distribution.  The second column
lists the number of repetitions for the simulations for the proposed
estimate over the number performed for Stone's estimate. For each
of the estimates considered the estimated variance times the sample

size is given. Standard deviations are given for the estimates for

ex and Stone's estimate.

4.5. Comparison of Results With Other Adaptive Estimates

The study of robust estimation of a location parameter has
concentrated on three classes of estimates; M-, L-, and R-estimates.
R-estimates have been discussed earlier in the present paper. Huber

[14] developed the pure M-estimators which are solutions to equations

of the form

n

Z lP[X.—M] =0 s
. i

i=1

as well as certain modifications introduced to ensure scale
invariance. L-estimates are linear combinations of order statistics.
It was of interest to compare the estimate proposed here with the

Hodges-Lehmann estimate since the latter is the best known R-estimate
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and the only one included in the Princeton Robustness Study (Andrews,
et al. [2]). It was also appropriate to compare the proposed
estimate with other nearly fully asymptotically efficient adaptive
procedures. It should be noted that such procedures do not become
leading contenders in the area of robust estimation of a location
parameter until sample sizes are greater than 40 (see Hogg [131]).

R-estimates are inherently scale invariant, a feature that is
not shared by the most thoroughly studied family of robust estimates,
namely, the pure M-estimates. The proper method for obtaining scale
invariance is a bothersome question in M-estimation. If R-estimation
can be shown to be viable, then this inherent advantage might
encourage investigators to return to the study and improvement of
R-estimators. On the other hand; if the price paid for this invari-
ance is too high, thén the recent lack of interest in this area would
appear to be justified.

Since we are to focus our attention on nearly fully asympto-
tically efficient procedures, we shall henceforth call such proce-
dures ultra-adaptive to distinguish them from estimates which are
adaptive for only a specific parameter and make no attempt at full
asymptotic efficiency. For instance, M-estimates are all adaptive
to some degree as a consequence of the behavior of the method used to
obtain scale invariance. In order to determine which estimates to
compare with the one proposed here, we need to examine those M-~ and
L-estimators which attempt to gain sufficient information about the

distribution to form an asymptotically optimal estimate.
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In L-estimation, at least two moderately successful attempts
‘to accomplish this.geal have been made. Johns [17], and Takeuchi
[30] both developed estimators which estimate the coefficients of
an L-estimate by methods which minimize an estimate of the variance.
Stone [28], has proposed an estimator similar to an M-estimator

which involves an estimate of the optimal { in the relation

2]
2 Yl -m/sl=0 ,
i=1

where S is a suitably chosen scale-invariant statistic. None of the
other estimators we éxamined which attempted to achieve at least
nearly full asymptotic efficiency were supported by small sample
results.

Examination of the above simulations shows that the adaptive
R-estimate developed here performs less well than those of Stone,
Takeuchi, and Johns. The proposed estimator compares well with
Takeuchi on 20 data points; and on distributions with longer tails
than the normal, it appears to dominate the Hodges-Lehmann estimator.

it was, however, nearly competitive which is perhaps
surprising considering the general opinion about the sample size
necessary for the successful application of the approach used here
(viz. Huber [15], Hogg [13], and Hajek [10]). The limitation
of the number of fractiles to be less than five did not allow us to
compete very well on both long-tailed distributions and the normal,
because it is difficult to pick the middle fractiles so as to give

good over-all performance. If these are moved from .15 and .85 to
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.30 and .70, then the long-tailed distributions are accommodated
since iN(u) is then constant over [0,3) and (.7, 1.0] causing gN to
behave somewhat like the median. If we move the middle fractiles
toward 0 and 1, then the sharp rise in J(u) necessary for good
performance on short;tailed distributions may occur, but at the
expense of possibly inaccurate density estimation in the tails of
long-tailed distributions. This may cause the coefficients of the
rank test to be too large for u near zero and one. This discussion
may seem pessimistic with regard to the possibility of efficiently
using R-estimates in the problem of location estimation; but, in
fact, the performance of the proposed estimator is rather better than
many investigators would have thought possible. It is not unreasona-
ble to believe that better smoothing techniques or density estimation
procedures might further improve the small-sample variances of such

R-estimators.

4.6, Summary

In conclusion, we recapitulate the points which have been
made concerning adaptive R-estimation. First, an adaptive
R-estimate has been constructed which is certainly a reasonably
robust estimate of location. The proposed estimate out-performs most
previous expectations for an estimator of this‘type, although there
exists estimators already in the literature which are clearly super-
ior to the proposed R-estimator. An explanation of this fact proba-
bly lies in the loss of information for small samples that

accompanies the use of ranks. Also, estimation in the tails is
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crucial; and on samples of size 20 and 40, it seems that it is not a
simple matter to estimate the density sufficiently accurately in the
tails for small samples. ™

It may/be that the future of R-estimation lies in a different
type of adaptation. A possible approach, for example, would be to
consider a family of score functions indexed by a parameter p. One
could then approximate the "best" p by minimizing an estimate of the
asymptotic variance of the R-estimate as a function of p. There is
some reason to hope that the performance of such an adaptive estimate

could approach that of the leading contenders in the area of robust

estimation.
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